Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis.

نویسندگان

  • Angelo Iulianella
  • Madhulika Sharma
  • Michael Durnin
  • Greg B Vanden Heuvel
  • Paul A Trainor
چکیده

Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle progression and development of neural progenitors. Cux2 loss-of-function mouse mutants exhibit smaller spinal cords with deficits in neural progenitor development as well as in neuroblast and interneuron differentiation. These defects correlate with reduced cell-cycle progression of neural progenitors coupled with diminished Neurod and p27(Kip1) activity. Conversely, in Cux2 gain-of-function transgenic mice, the spinal cord is enlarged in association with enhanced neuroblast formation and neuronal differentiation, particularly with respect to interneurons. Furthermore, Cux2 overexpression induces high levels of Neurod and p27(Kip1). Mechanistically, we discovered through chromatin immunoprecipitation assays that Cux2 binds both the Neurod and p27(Kip1) promoters in vivo, indicating that these interactions are direct. Our results therefore show that Cux2 functions at multiple levels during spinal cord neurogenesis. Cux2 initially influences cell-cycle progression in neural progenitors but subsequently makes additional inputs through Neurod and p27(Kip1) to regulate neuroblast formation, cell-cycle exit and cell-fate determination. Thus our work defines novel roles for Cux2 as a transcription factor that integrates cell-cycle progression with neural progenitor development during spinal cord neurogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cux2 functions downstream of Notch signaling to regulate dorsal interneuron formation in the spinal cord.

Obtaining the diversity of interneuron subtypes in their appropriate numbers requires the orchestrated integration of progenitor proliferation with the regulation of differentiation. Here we demonstrate through loss-of-function studies in mice that the Cut homeodomain transcription factor Cux2 (Cutl2) plays an important role in regulating the formation of dorsal spinal cord interneurons. Furthe...

متن کامل

A cell-autonomous requirement for Cip/Kip cyclin-kinase inhibitors in regulating neuronal cell cycle exit but not differentiation in the developing spinal cord.

Control over cell cycle exit is fundamental to the normal generation of the wide array of distinct cell types that comprise the mature vertebrate CNS. Here, we demonstrate a critical role for Cip/Kip class cyclin-kinase inhibitory (CKI) proteins in regulating this process during neurogenesis in the embryonic spinal cord. Using immunohistochemistry, we show that all three identified Cip/Kip CKI ...

متن کامل

Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord.

Various types of neurons and glia are generated following a precise spatial and temporal order during neurogenesis. The mechanisms that control this sequential generation of neuronal and glial cell types from the same progenitor population are not well understood. Growth differentiation factor 11 (Gdf11) belongs to the TGF-β family of proteins and is expressed transiently in newly born neurons ...

متن کامل

The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production.

During embryonic development, changes in cell cycle kinetics have been associated with neurogenesis. This observation suggests that specific cell cycle regulators may be recruited to modify cell cycle dynamics and influence the decision between proliferation and differentiation. In the present study, we investigate the role of core positive cell cycle regulators, the CDC25 phosphatases, in this...

متن کامل

BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors.

During development, coordinate regulation of cell cycle exit and differentiation of neuronal precursors is essential for generation of appropriate number of neurons and proper wiring of neuronal circuits. BM88 is a neuronal protein associated in vivo with terminal neuron-generating divisions, marking the exit of proliferative cells from the cell cycle. Here, we provide functional evidence that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 135 4  شماره 

صفحات  -

تاریخ انتشار 2008